VTK  9.3.0
vtkParametricBohemianDome.h
Go to the documentation of this file.
1 // SPDX-FileCopyrightText: Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
2 // SPDX-License-Identifier: BSD-3-Clause
29 #ifndef vtkParametricBohemianDome_h
30 #define vtkParametricBohemianDome_h
31 
32 #include "vtkCommonComputationalGeometryModule.h" // For export macro
33 #include "vtkParametricFunction.h"
34 
35 VTK_ABI_NAMESPACE_BEGIN
36 class VTKCOMMONCOMPUTATIONALGEOMETRY_EXPORT vtkParametricBohemianDome : public vtkParametricFunction
37 {
38 public:
40  void PrintSelf(ostream& os, vtkIndent indent) override;
41 
43 
46  vtkGetMacro(A, double);
47  vtkSetMacro(A, double);
49 
50  vtkGetMacro(B, double);
51  vtkSetMacro(B, double);
52 
53  vtkGetMacro(C, double);
54  vtkSetMacro(C, double);
55 
56  // (MinimumU, MaximumU) = (-pi, pi),
57  // (MinimumV, MaximumV) = (-pi, pi),
58  // JoinU = 1, JoinV = 1,
59  // TwistU = 0, TwistV = 0;
60  // ClockwiseOrdering = 0,
61  // DerivativesAvailable = 1,
63 
67  int GetDimension() override { return 2; }
68 
77  void Evaluate(double uvw[3], double Pt[3], double Duvw[9]) override;
78 
83  double EvaluateScalar(double uvw[3], double Pt[3], double Duvw[9]) override;
84 
85 protected:
88 
89  // Variables
90  double A;
91  double B;
92  double C;
93 
94 private:
96  void operator=(const vtkParametricBohemianDome&) = delete;
97 };
98 
99 VTK_ABI_NAMESPACE_END
100 #endif
a simple class to control print indentation
Definition: vtkIndent.h:38
Generate a Bohemian dome.
int GetDimension() override
Return the parametric dimension of the class.
static vtkParametricBohemianDome * New()
double EvaluateScalar(double uvw[3], double Pt[3], double Duvw[9]) override
Calculate a user defined scalar using one or all of uvw, Pt, Duvw.
~vtkParametricBohemianDome() override
void PrintSelf(ostream &os, vtkIndent indent) override
Methods invoked by print to print information about the object including superclasses.
void Evaluate(double uvw[3], double Pt[3], double Duvw[9]) override
BohemianDome surface.
abstract interface for parametric functions